↳ Prolog
↳ PrologToPiTRSProof
perm1_in_gg(L, M) → U1_gg(L, M, eq_len1_in_gg(L, M))
eq_len1_in_gg([], []) → eq_len1_out_gg([], [])
eq_len1_in_gg(.(X, Xs), .(X1, Ys)) → U3_gg(X, Xs, X1, Ys, eq_len1_in_gg(Xs, Ys))
U3_gg(X, Xs, X1, Ys, eq_len1_out_gg(Xs, Ys)) → eq_len1_out_gg(.(X, Xs), .(X1, Ys))
U1_gg(L, M, eq_len1_out_gg(L, M)) → U2_gg(L, M, same_sets_in_gg(L, M))
same_sets_in_gg([], X) → same_sets_out_gg([], X)
same_sets_in_gg(.(X, Xs), L) → U5_gg(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X1)) → member_out_gg(X, .(X, X1))
member_in_gg(X, .(X1, T)) → U4_gg(X, X1, T, member_in_gg(X, T))
U4_gg(X, X1, T, member_out_gg(X, T)) → member_out_gg(X, .(X1, T))
U5_gg(X, Xs, L, member_out_gg(X, L)) → U6_gg(X, Xs, L, same_sets_in_gg(Xs, L))
U6_gg(X, Xs, L, same_sets_out_gg(Xs, L)) → same_sets_out_gg(.(X, Xs), L)
U2_gg(L, M, same_sets_out_gg(L, M)) → perm1_out_gg(L, M)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
perm1_in_gg(L, M) → U1_gg(L, M, eq_len1_in_gg(L, M))
eq_len1_in_gg([], []) → eq_len1_out_gg([], [])
eq_len1_in_gg(.(X, Xs), .(X1, Ys)) → U3_gg(X, Xs, X1, Ys, eq_len1_in_gg(Xs, Ys))
U3_gg(X, Xs, X1, Ys, eq_len1_out_gg(Xs, Ys)) → eq_len1_out_gg(.(X, Xs), .(X1, Ys))
U1_gg(L, M, eq_len1_out_gg(L, M)) → U2_gg(L, M, same_sets_in_gg(L, M))
same_sets_in_gg([], X) → same_sets_out_gg([], X)
same_sets_in_gg(.(X, Xs), L) → U5_gg(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X1)) → member_out_gg(X, .(X, X1))
member_in_gg(X, .(X1, T)) → U4_gg(X, X1, T, member_in_gg(X, T))
U4_gg(X, X1, T, member_out_gg(X, T)) → member_out_gg(X, .(X1, T))
U5_gg(X, Xs, L, member_out_gg(X, L)) → U6_gg(X, Xs, L, same_sets_in_gg(Xs, L))
U6_gg(X, Xs, L, same_sets_out_gg(Xs, L)) → same_sets_out_gg(.(X, Xs), L)
U2_gg(L, M, same_sets_out_gg(L, M)) → perm1_out_gg(L, M)
PERM1_IN_GG(L, M) → U1_GG(L, M, eq_len1_in_gg(L, M))
PERM1_IN_GG(L, M) → EQ_LEN1_IN_GG(L, M)
EQ_LEN1_IN_GG(.(X, Xs), .(X1, Ys)) → U3_GG(X, Xs, X1, Ys, eq_len1_in_gg(Xs, Ys))
EQ_LEN1_IN_GG(.(X, Xs), .(X1, Ys)) → EQ_LEN1_IN_GG(Xs, Ys)
U1_GG(L, M, eq_len1_out_gg(L, M)) → U2_GG(L, M, same_sets_in_gg(L, M))
U1_GG(L, M, eq_len1_out_gg(L, M)) → SAME_SETS_IN_GG(L, M)
SAME_SETS_IN_GG(.(X, Xs), L) → U5_GG(X, Xs, L, member_in_gg(X, L))
SAME_SETS_IN_GG(.(X, Xs), L) → MEMBER_IN_GG(X, L)
MEMBER_IN_GG(X, .(X1, T)) → U4_GG(X, X1, T, member_in_gg(X, T))
MEMBER_IN_GG(X, .(X1, T)) → MEMBER_IN_GG(X, T)
U5_GG(X, Xs, L, member_out_gg(X, L)) → U6_GG(X, Xs, L, same_sets_in_gg(Xs, L))
U5_GG(X, Xs, L, member_out_gg(X, L)) → SAME_SETS_IN_GG(Xs, L)
perm1_in_gg(L, M) → U1_gg(L, M, eq_len1_in_gg(L, M))
eq_len1_in_gg([], []) → eq_len1_out_gg([], [])
eq_len1_in_gg(.(X, Xs), .(X1, Ys)) → U3_gg(X, Xs, X1, Ys, eq_len1_in_gg(Xs, Ys))
U3_gg(X, Xs, X1, Ys, eq_len1_out_gg(Xs, Ys)) → eq_len1_out_gg(.(X, Xs), .(X1, Ys))
U1_gg(L, M, eq_len1_out_gg(L, M)) → U2_gg(L, M, same_sets_in_gg(L, M))
same_sets_in_gg([], X) → same_sets_out_gg([], X)
same_sets_in_gg(.(X, Xs), L) → U5_gg(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X1)) → member_out_gg(X, .(X, X1))
member_in_gg(X, .(X1, T)) → U4_gg(X, X1, T, member_in_gg(X, T))
U4_gg(X, X1, T, member_out_gg(X, T)) → member_out_gg(X, .(X1, T))
U5_gg(X, Xs, L, member_out_gg(X, L)) → U6_gg(X, Xs, L, same_sets_in_gg(Xs, L))
U6_gg(X, Xs, L, same_sets_out_gg(Xs, L)) → same_sets_out_gg(.(X, Xs), L)
U2_gg(L, M, same_sets_out_gg(L, M)) → perm1_out_gg(L, M)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
PERM1_IN_GG(L, M) → U1_GG(L, M, eq_len1_in_gg(L, M))
PERM1_IN_GG(L, M) → EQ_LEN1_IN_GG(L, M)
EQ_LEN1_IN_GG(.(X, Xs), .(X1, Ys)) → U3_GG(X, Xs, X1, Ys, eq_len1_in_gg(Xs, Ys))
EQ_LEN1_IN_GG(.(X, Xs), .(X1, Ys)) → EQ_LEN1_IN_GG(Xs, Ys)
U1_GG(L, M, eq_len1_out_gg(L, M)) → U2_GG(L, M, same_sets_in_gg(L, M))
U1_GG(L, M, eq_len1_out_gg(L, M)) → SAME_SETS_IN_GG(L, M)
SAME_SETS_IN_GG(.(X, Xs), L) → U5_GG(X, Xs, L, member_in_gg(X, L))
SAME_SETS_IN_GG(.(X, Xs), L) → MEMBER_IN_GG(X, L)
MEMBER_IN_GG(X, .(X1, T)) → U4_GG(X, X1, T, member_in_gg(X, T))
MEMBER_IN_GG(X, .(X1, T)) → MEMBER_IN_GG(X, T)
U5_GG(X, Xs, L, member_out_gg(X, L)) → U6_GG(X, Xs, L, same_sets_in_gg(Xs, L))
U5_GG(X, Xs, L, member_out_gg(X, L)) → SAME_SETS_IN_GG(Xs, L)
perm1_in_gg(L, M) → U1_gg(L, M, eq_len1_in_gg(L, M))
eq_len1_in_gg([], []) → eq_len1_out_gg([], [])
eq_len1_in_gg(.(X, Xs), .(X1, Ys)) → U3_gg(X, Xs, X1, Ys, eq_len1_in_gg(Xs, Ys))
U3_gg(X, Xs, X1, Ys, eq_len1_out_gg(Xs, Ys)) → eq_len1_out_gg(.(X, Xs), .(X1, Ys))
U1_gg(L, M, eq_len1_out_gg(L, M)) → U2_gg(L, M, same_sets_in_gg(L, M))
same_sets_in_gg([], X) → same_sets_out_gg([], X)
same_sets_in_gg(.(X, Xs), L) → U5_gg(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X1)) → member_out_gg(X, .(X, X1))
member_in_gg(X, .(X1, T)) → U4_gg(X, X1, T, member_in_gg(X, T))
U4_gg(X, X1, T, member_out_gg(X, T)) → member_out_gg(X, .(X1, T))
U5_gg(X, Xs, L, member_out_gg(X, L)) → U6_gg(X, Xs, L, same_sets_in_gg(Xs, L))
U6_gg(X, Xs, L, same_sets_out_gg(Xs, L)) → same_sets_out_gg(.(X, Xs), L)
U2_gg(L, M, same_sets_out_gg(L, M)) → perm1_out_gg(L, M)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
MEMBER_IN_GG(X, .(X1, T)) → MEMBER_IN_GG(X, T)
perm1_in_gg(L, M) → U1_gg(L, M, eq_len1_in_gg(L, M))
eq_len1_in_gg([], []) → eq_len1_out_gg([], [])
eq_len1_in_gg(.(X, Xs), .(X1, Ys)) → U3_gg(X, Xs, X1, Ys, eq_len1_in_gg(Xs, Ys))
U3_gg(X, Xs, X1, Ys, eq_len1_out_gg(Xs, Ys)) → eq_len1_out_gg(.(X, Xs), .(X1, Ys))
U1_gg(L, M, eq_len1_out_gg(L, M)) → U2_gg(L, M, same_sets_in_gg(L, M))
same_sets_in_gg([], X) → same_sets_out_gg([], X)
same_sets_in_gg(.(X, Xs), L) → U5_gg(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X1)) → member_out_gg(X, .(X, X1))
member_in_gg(X, .(X1, T)) → U4_gg(X, X1, T, member_in_gg(X, T))
U4_gg(X, X1, T, member_out_gg(X, T)) → member_out_gg(X, .(X1, T))
U5_gg(X, Xs, L, member_out_gg(X, L)) → U6_gg(X, Xs, L, same_sets_in_gg(Xs, L))
U6_gg(X, Xs, L, same_sets_out_gg(Xs, L)) → same_sets_out_gg(.(X, Xs), L)
U2_gg(L, M, same_sets_out_gg(L, M)) → perm1_out_gg(L, M)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
MEMBER_IN_GG(X, .(X1, T)) → MEMBER_IN_GG(X, T)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
MEMBER_IN_GG(X, .(X1, T)) → MEMBER_IN_GG(X, T)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
SAME_SETS_IN_GG(.(X, Xs), L) → U5_GG(X, Xs, L, member_in_gg(X, L))
U5_GG(X, Xs, L, member_out_gg(X, L)) → SAME_SETS_IN_GG(Xs, L)
perm1_in_gg(L, M) → U1_gg(L, M, eq_len1_in_gg(L, M))
eq_len1_in_gg([], []) → eq_len1_out_gg([], [])
eq_len1_in_gg(.(X, Xs), .(X1, Ys)) → U3_gg(X, Xs, X1, Ys, eq_len1_in_gg(Xs, Ys))
U3_gg(X, Xs, X1, Ys, eq_len1_out_gg(Xs, Ys)) → eq_len1_out_gg(.(X, Xs), .(X1, Ys))
U1_gg(L, M, eq_len1_out_gg(L, M)) → U2_gg(L, M, same_sets_in_gg(L, M))
same_sets_in_gg([], X) → same_sets_out_gg([], X)
same_sets_in_gg(.(X, Xs), L) → U5_gg(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X1)) → member_out_gg(X, .(X, X1))
member_in_gg(X, .(X1, T)) → U4_gg(X, X1, T, member_in_gg(X, T))
U4_gg(X, X1, T, member_out_gg(X, T)) → member_out_gg(X, .(X1, T))
U5_gg(X, Xs, L, member_out_gg(X, L)) → U6_gg(X, Xs, L, same_sets_in_gg(Xs, L))
U6_gg(X, Xs, L, same_sets_out_gg(Xs, L)) → same_sets_out_gg(.(X, Xs), L)
U2_gg(L, M, same_sets_out_gg(L, M)) → perm1_out_gg(L, M)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
SAME_SETS_IN_GG(.(X, Xs), L) → U5_GG(X, Xs, L, member_in_gg(X, L))
U5_GG(X, Xs, L, member_out_gg(X, L)) → SAME_SETS_IN_GG(Xs, L)
member_in_gg(X, .(X, X1)) → member_out_gg(X, .(X, X1))
member_in_gg(X, .(X1, T)) → U4_gg(X, X1, T, member_in_gg(X, T))
U4_gg(X, X1, T, member_out_gg(X, T)) → member_out_gg(X, .(X1, T))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
SAME_SETS_IN_GG(.(X, Xs), L) → U5_GG(Xs, L, member_in_gg(X, L))
U5_GG(Xs, L, member_out_gg) → SAME_SETS_IN_GG(Xs, L)
member_in_gg(X, .(X, X1)) → member_out_gg
member_in_gg(X, .(X1, T)) → U4_gg(member_in_gg(X, T))
U4_gg(member_out_gg) → member_out_gg
member_in_gg(x0, x1)
U4_gg(x0)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
EQ_LEN1_IN_GG(.(X, Xs), .(X1, Ys)) → EQ_LEN1_IN_GG(Xs, Ys)
perm1_in_gg(L, M) → U1_gg(L, M, eq_len1_in_gg(L, M))
eq_len1_in_gg([], []) → eq_len1_out_gg([], [])
eq_len1_in_gg(.(X, Xs), .(X1, Ys)) → U3_gg(X, Xs, X1, Ys, eq_len1_in_gg(Xs, Ys))
U3_gg(X, Xs, X1, Ys, eq_len1_out_gg(Xs, Ys)) → eq_len1_out_gg(.(X, Xs), .(X1, Ys))
U1_gg(L, M, eq_len1_out_gg(L, M)) → U2_gg(L, M, same_sets_in_gg(L, M))
same_sets_in_gg([], X) → same_sets_out_gg([], X)
same_sets_in_gg(.(X, Xs), L) → U5_gg(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X1)) → member_out_gg(X, .(X, X1))
member_in_gg(X, .(X1, T)) → U4_gg(X, X1, T, member_in_gg(X, T))
U4_gg(X, X1, T, member_out_gg(X, T)) → member_out_gg(X, .(X1, T))
U5_gg(X, Xs, L, member_out_gg(X, L)) → U6_gg(X, Xs, L, same_sets_in_gg(Xs, L))
U6_gg(X, Xs, L, same_sets_out_gg(Xs, L)) → same_sets_out_gg(.(X, Xs), L)
U2_gg(L, M, same_sets_out_gg(L, M)) → perm1_out_gg(L, M)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
EQ_LEN1_IN_GG(.(X, Xs), .(X1, Ys)) → EQ_LEN1_IN_GG(Xs, Ys)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
EQ_LEN1_IN_GG(.(X, Xs), .(X1, Ys)) → EQ_LEN1_IN_GG(Xs, Ys)
From the DPs we obtained the following set of size-change graphs: